Hilbert polynomials and Arveson's curvature invariant

研究成果: 雜誌貢獻回顧評介論文同行評審

19 引文 斯高帕斯(Scopus)

摘要

We define and study Hilbert polynomials for certain holomorphic Hilbert spaces. We obtain several estimates for these polynomials and their coefficients. Our estimates inspire us to investigate the connection between the leading coefficients of Hilbert polynomials for invariant subspaces of the symmetric Fock space and Arveson's curvature invariant for coinvariant subspaces. We are able to obtain some formulas relating the curvature invariant with other invariants. In particular, we prove that Arveson's version of the Gauss-Bonnet-Chern formula is true when the invariant subspaces are generated by any polynomials.

原文???core.languages.en_GB???
頁(從 - 到)445-464
頁數20
期刊Journal of Functional Analysis
198
發行號2
DOIs
出版狀態已出版 - 10 3月 2003

指紋

深入研究「Hilbert polynomials and Arveson's curvature invariant」主題。共同形成了獨特的指紋。

引用此