TY - JOUR
T1 - High-Capacity Rechargeable Li/Cl2Batteries with Graphite Positive Electrodes
AU - Zhu, Guanzhou
AU - Liang, Peng
AU - Huang, Cheng Liang
AU - Huang, Cheng Chia
AU - Li, Yuan Yao
AU - Wu, Shu Chi
AU - Li, Jiachen
AU - Wang, Feifei
AU - Tian, Xin
AU - Huang, Wei Hsiang
AU - Jiang, Shi Kai
AU - Hung, Wei Hsuan
AU - Chen, Hui
AU - Lin, Meng Chang
AU - Hwang, Bing Joe
AU - Dai, Hongjie
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/12/14
Y1 - 2022/12/14
N2 - Developing new types of high-capacity and high-energy density rechargeable batteries is important to future generations of consumer electronics, electric vehicles, and mass energy storage applications. Recently, we reported ∼3.5 V sodium/chlorine (Na/Cl2) and lithium/chlorine (Li/Cl2) batteries with up to 1200 mAh g-1reversible capacity, using either a Na or a Li metal as the negative electrode, an amorphous carbon nanosphere (aCNS) as the positive electrode, and aluminum chloride (AlCl3) dissolved in thionyl chloride (SOCl2) with fluoride-based additives as the electrolyte [Zhu et al., Nature, 2021, 596 (7873), 525-530]. The high surface area and large pore volume of aCNS in the positive electrode facilitated NaCl or LiCl deposition and trapping of Cl2for reversible NaCl/Cl2or LiCl/Cl2redox reactions and battery discharge/charge cycling. Here, we report an initially low surface area/porosity graphite (DGr) material as the positive electrode in a Li/Cl2battery, attaining high battery performance after activation in carbon dioxide (CO2) at 1000 °C (DGr_ac) with the first discharge capacity ∼1910 mAh g-1and a cycling capacity up to 1200 mAh g-1. Ex situ Raman spectroscopy and X-ray diffraction (XRD) revealed the evolution of graphite over battery cycling, including intercalation/deintercalation and exfoliation that generated sufficient pores for hosting LiCl/Cl2redox. This work opens up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl2batteries. Lastly, we employed mass spectrometry to probe the Cl2trapped in the graphitic positive electrode, shedding light into the Li/Cl2battery operation.
AB - Developing new types of high-capacity and high-energy density rechargeable batteries is important to future generations of consumer electronics, electric vehicles, and mass energy storage applications. Recently, we reported ∼3.5 V sodium/chlorine (Na/Cl2) and lithium/chlorine (Li/Cl2) batteries with up to 1200 mAh g-1reversible capacity, using either a Na or a Li metal as the negative electrode, an amorphous carbon nanosphere (aCNS) as the positive electrode, and aluminum chloride (AlCl3) dissolved in thionyl chloride (SOCl2) with fluoride-based additives as the electrolyte [Zhu et al., Nature, 2021, 596 (7873), 525-530]. The high surface area and large pore volume of aCNS in the positive electrode facilitated NaCl or LiCl deposition and trapping of Cl2for reversible NaCl/Cl2or LiCl/Cl2redox reactions and battery discharge/charge cycling. Here, we report an initially low surface area/porosity graphite (DGr) material as the positive electrode in a Li/Cl2battery, attaining high battery performance after activation in carbon dioxide (CO2) at 1000 °C (DGr_ac) with the first discharge capacity ∼1910 mAh g-1and a cycling capacity up to 1200 mAh g-1. Ex situ Raman spectroscopy and X-ray diffraction (XRD) revealed the evolution of graphite over battery cycling, including intercalation/deintercalation and exfoliation that generated sufficient pores for hosting LiCl/Cl2redox. This work opens up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl2batteries. Lastly, we employed mass spectrometry to probe the Cl2trapped in the graphitic positive electrode, shedding light into the Li/Cl2battery operation.
UR - http://www.scopus.com/inward/record.url?scp=85143391928&partnerID=8YFLogxK
U2 - 10.1021/jacs.2c07826
DO - 10.1021/jacs.2c07826
M3 - 期刊論文
C2 - 36450002
AN - SCOPUS:85143391928
SN - 0002-7863
VL - 144
SP - 22505
EP - 22513
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 49
ER -