跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
Hierarchical Image Transformation and Multi-Level Features for Anomaly Defect Detection
Isack Farady, Chia Chen Kuo, Hui Fuang Ng,
Chih Yang Lin
機械工程學系
研究成果
:
雜誌貢獻
›
期刊論文
›
同行評審
10
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Hierarchical Image Transformation and Multi-Level Features for Anomaly Defect Detection」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Defect Detection
100%
Image Transformation
100%
Multi-level Features
100%
Non-ideality
66%
Idealized Images
66%
Real-world Application
33%
Gaussian Mixture Model
33%
Training Data
33%
Anomaly Detection
33%
Adaptive Learning System
33%
Work Environment
33%
Application Data
33%
Deep Learning Model
33%
High-dimensional Features
33%
Training Samples
33%
Normality
33%
Normal Behavior
33%
Small Size Sample
33%
Feature Module
33%
Detection Network
33%
Hierarchical Process
33%
Feature Exploration
33%
Industrial Datasets
33%
Hierarchical Transformation
33%
Non-ideal Conditions
33%
Perturbance
33%
Video Anomaly Detection
33%
Baseline Performance
33%
Industrial Production Lines
33%
Industrial Metals
33%
Engineering
Image Transformation
100%
Defect Detection
100%
Level Feature
100%
Anomaly Detection
66%
Ideal Image
66%
Experimental Result
33%
Gaussian Mixture Model
33%
Industrial Production
33%
Extracted Feature
33%
Production Line
33%
Real World Application
33%
Deep Learning Method
33%
Convolutional Neural Network
33%
Computer Science
Image Transformation
100%
Anomaly Detection
66%
Experimental Result
33%
Gaussian Mixture Model
33%
Extracted Feature
33%
Preprocessing
33%
Training Data
33%
Adaptive Learning
33%
Application Data
33%
Industrial Production
33%
World Application
33%
Dimensional Feature
33%
Training Sample
33%
Convolutional Neural Network
33%
Production Line
33%
Normal Behavior
33%
Deep Learning Method
33%