Hardy-Littlewood type inequalities for laguerre series

Chin Cheng Lin, Shu Huey Lin

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Let { cj} be a null sequence of bounded variation. We give appreciate smoothness and growth conditions on {c j} to obtain the pointwise convergence as well as L r-convergence of Laguerre series Σcj&Lfr;ja. Then, we prove a Hardy-Littlewood type inequality ∫0 | f (t)| rdt≤CΣ j=0 | cj| rj- 1-r/2 for certain r≤1, where f is the limit function of Σcj&Lfr;ja. Moreover, we show that if f (x)∼Σcj&Lfr;ja is in L r, r≥1, we have the converse Hardy-Littlewood type inequality Σ j=0 | cj| rj -β≤ C∫0 | f (t)| rdt for r≥1 and β<-r/2.

原文???core.languages.en_GB???
頁(從 - 到)533-540
頁數8
期刊International Journal of Mathematics and Mathematical Sciences
30
發行號9
DOIs
出版狀態已出版 - 2002

指紋

深入研究「Hardy-Littlewood type inequalities for laguerre series」主題。共同形成了獨特的指紋。

引用此