每年專案
摘要
Long-term stability, global coverage and high resolution are characteristics that make the Global Navigation Satellite System (GNSS) radio occultation (RO) technique well-suitable to serve as anchor measurements for observing the Earth's atmosphere. The concept of occultation soundings utilizes a receiver placed on a low Earth orbit to measure the accumulated atmospheric contribution along the limb in terms of a phase delay. A high sampling rate allows to reconstruct profiles of geophysical parameters through an inversion process of occultation signals. However, such measurements require a careful processing in order to provide accurate retrievals in the neutral atmosphere. The following development describes specific aspects in radio occultation methodology implemented in the retrieval chain from phase data to profiles of dry pressure and dry temperature. Independent retrievals from near-real time measurements are compared with occultation products provided by official processing centers to demonstrate reliability of the solution. The region within the upper troposphere and lower stratosphere (UTLS) is particularly represented by a low uncertainty being within 0.5% (K). A comparison with radiosondes shows a significant contribution of a water vapor term in the lower troposphere that comes from the dry air assumption in occultation profiles of pressure and temperature. Radiosonde measurements reproduced to refractivity profiles show very high agreement with occultation soundings, which is generally below 5%. A superior accuracy of RO refractivity is observed in the upper troposphere, where retrievals are consistent with radiosondes to 1%.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 215-233 |
頁數 | 19 |
期刊 | Terrestrial, Atmospheric and Oceanic Sciences |
卷 | 30 |
發行號 | 2 |
DOIs | |
出版狀態 | 已出版 - 4月 2019 |
指紋
深入研究「GNSS radio occultation profiles in the neutral atmosphere from inversion of excess phase data」主題。共同形成了獨特的指紋。專案
- 3 已完成
-
南海-海洋大陸區對流與大尺度環流交互作用 (II)-子計畫:使用衛星遙測資料探討南海地區之雲與對流過程(II)(2/2)
Liu, C.-Y. (PI)
1/08/18 → 31/08/19
研究計畫: Research
-
-
整合遙測技術與數值模式於台灣地區颱風降雨之監測與預報-子計畫:衛 星觀測及反演資料於颱風近即時數值預報之精進技術研究(III)
Liu, C.-Y. (PI)
1/08/17 → 30/09/18
研究計畫: Research