Global optimization using novel randomly adapting particle swarm optimization approach

Nai Jen Li, Wen June Wang, Chen Chien Hsu, Chih Min Lin

研究成果: 書貢獻/報告類型會議論文篇章同行評審

4 引文 斯高帕斯(Scopus)

摘要

This paper proposes a novel randomly adapting particle swarm optimization (RAPSO) approach which uses a weighed particle in a swarm to solve multi-dimensional optimization problems. In the proposed method, the strategy of the RAPSO acquires the benefit from a weighed particle to achieve optimal position in explorative and exploitative search. The weighed particle provides a better direction of search and avoids trapping in local solution during the optimization process. The simulation results show the effectiveness of the RAPSO, which outperforms the traditional PSO method, cooperative random learning particle swarm optimization (CRPSO), genetic algorithm (GA) and differential evolution (DE) on the 6 benchmark functions.

原文???core.languages.en_GB???
主出版物標題2011 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2011 - Conference Digest
頁面1783-1787
頁數5
DOIs
出版狀態已出版 - 2011
事件2011 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2011 - Anchorage, AK, United States
持續時間: 9 10月 201112 10月 2011

出版系列

名字Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
ISSN(列印)1062-922X

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2011 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2011
國家/地區United States
城市Anchorage, AK
期間9/10/1112/10/11

指紋

深入研究「Global optimization using novel randomly adapting particle swarm optimization approach」主題。共同形成了獨特的指紋。

引用此