TY - JOUR
T1 - Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells
AU - Chen, Yen Ju
AU - Thang, Mike W.C.
AU - Chan, Yu Tzu
AU - Huang, Yu Feng
AU - Ma, Nianhan
AU - Yu, Alice L.
AU - Wu, Chung Yi
AU - Hu, Miao Lin
AU - Chiu, Kuo Ping
N1 - Funding Information:
This study is supported by research grant from Academia Sinica. We want to express our special thanks to Mr. H.F. Liang for material support, professor Sheng-Yang Wang from National Chung Hsing University for providing us antrocamphin A, and Chun-Chao Wang for help on HPLC analysis.
PY - 2013/12/17
Y1 - 2013/12/17
N2 - Recent studies have demonstrated a potent anticancer potential of medicinal fungus Antrodia cinnamomea, especially against hepatocarcinoma. These studies, however, were performed with prolonged treatments, and the early anticancer events remain missing. To probe the early anticancer mechanisms of A. cinnamomea, we treated SK-Hep-1 liver cancer cell with A. cinnamomea fruiting body extract for 2 and 4 hours, sequenced RNA samples with next-generation sequencing approach, and profiled the genome-wide miRNA and mRNA transcriptomes. Results unmistakably associated the early anticancer effect of A. cinnamomea fruiting body extract with a global downregulation of miRNAs which occurred solely in the A. cinnamomea fruiting body extract-treated SK-Hep-1 cells. Moreover, the inhibitory effect of A. cinnamomea fruiting body extract upon cancer miRNAs imposed no discrimination against any particular miRNA species, with oncomirs miR-21, miR-191 and major oncogenic clusters miR-17-92 and miR-106b-25 among the most severely downregulated. Western blotting further indicated a decrease in Drosha and Dicer proteins which play a key role in miRNA biogenesis, together with an increase of XRN2 known to participate in miRNA degradation pathway. Transcriptome profiling followed by GO and pathway analyses indicated that A. cinnamomea induced apoptosis, which was tightly associated with a downregulation of PI3K/AKT and MAPK pathways. Phosphorylation assay further suggested that JNK and c-Jun were closely involved in the apoptotic process. Taken together, our data indicated that the anticancer effect of A. cinnamomea can take place within a few hours by targeting multiple proteins and the miRNA system. A. cinnamomea indiscriminately induced a global downregulation of miRNAs by simultaneously inhibiting the key enzymes involved in miRNA maturation and activating XRN2 protein involved in miRNA degradation. Collapsing of the miRNA system together with downregulation of cell growth and survival pathways and activation of JNK signaling unleash the extrinsic and intrinsic apoptosis pathways, leading to the cancer cell death.
AB - Recent studies have demonstrated a potent anticancer potential of medicinal fungus Antrodia cinnamomea, especially against hepatocarcinoma. These studies, however, were performed with prolonged treatments, and the early anticancer events remain missing. To probe the early anticancer mechanisms of A. cinnamomea, we treated SK-Hep-1 liver cancer cell with A. cinnamomea fruiting body extract for 2 and 4 hours, sequenced RNA samples with next-generation sequencing approach, and profiled the genome-wide miRNA and mRNA transcriptomes. Results unmistakably associated the early anticancer effect of A. cinnamomea fruiting body extract with a global downregulation of miRNAs which occurred solely in the A. cinnamomea fruiting body extract-treated SK-Hep-1 cells. Moreover, the inhibitory effect of A. cinnamomea fruiting body extract upon cancer miRNAs imposed no discrimination against any particular miRNA species, with oncomirs miR-21, miR-191 and major oncogenic clusters miR-17-92 and miR-106b-25 among the most severely downregulated. Western blotting further indicated a decrease in Drosha and Dicer proteins which play a key role in miRNA biogenesis, together with an increase of XRN2 known to participate in miRNA degradation pathway. Transcriptome profiling followed by GO and pathway analyses indicated that A. cinnamomea induced apoptosis, which was tightly associated with a downregulation of PI3K/AKT and MAPK pathways. Phosphorylation assay further suggested that JNK and c-Jun were closely involved in the apoptotic process. Taken together, our data indicated that the anticancer effect of A. cinnamomea can take place within a few hours by targeting multiple proteins and the miRNA system. A. cinnamomea indiscriminately induced a global downregulation of miRNAs by simultaneously inhibiting the key enzymes involved in miRNA maturation and activating XRN2 protein involved in miRNA degradation. Collapsing of the miRNA system together with downregulation of cell growth and survival pathways and activation of JNK signaling unleash the extrinsic and intrinsic apoptosis pathways, leading to the cancer cell death.
UR - http://www.scopus.com/inward/record.url?scp=84893044891&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0082751
DO - 10.1371/journal.pone.0082751
M3 - 期刊論文
C2 - 24358224
AN - SCOPUS:84893044891
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 12
M1 - e82751
ER -