Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds

研究成果: 雜誌貢獻期刊論文同行評審

3 引文 斯高帕斯(Scopus)

摘要

Basal conditions directly control the glacier sliding rate and the dynamic discharge of ice. Recent glacier destabilization events indicate that some marine-terminating glaciers quickly respond to lubricated beds with increased flow speed, but the underlying physics, especially how this vulnerability relates to glacier geometry and flow characteristics, remains unclear. This paper presents a 1D physical framework for glacier dynamic vulnerability assuming sudden basal lubrication as an initial perturbation. In this new model, two quantities determine the scale and the areal extent of the subsequent thinning and acceleration after the bed is lubricated: Péclet number (Pe) and the product of glacier speed and thickness gradient (dubbed J0 in this study). To validate the model, this paper calculates Pe and J0 using multi-sourced data from 1996 to 1998 for outlet glaciers in the Greenland ice sheet and Austfonna ice cap, Svalbard, and compares the results with the glacier speed change during 1996/1998-2018. Glaciers with lower Pe and J0 are more likely to accelerate during this 20-year span than those with higher Pe and J0, which matches the model prediction. A combined factor of ice thickness, surface slope, and initial flow speed physically determines how much and how fast glaciers respond to lubricated beds in terms of speed, elevation, and terminus change.

原文???core.languages.en_GB???
頁(從 - 到)1431-1445
頁數15
期刊Cryosphere
16
發行號4
DOIs
出版狀態已出版 - 21 4月 2022

指紋

深入研究「Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds」主題。共同形成了獨特的指紋。

引用此