每年專案
摘要
We propose the mixed-attention-based Generative Adversarial Network (named maGAN), and apply it for citation intent classification in scientific publication. We select domain-specific training data, propose a mixed attention mechanism, and employ generative adversarial network architecture for pre-training language model and fine-tuning to the downstream multi-class classification task. Experiments were conducted on the SciCite datasets to compare model performance. Our proposed maGAN model achieved the best Macro-F1 of 0.8532.
原文 | ???core.languages.en_GB??? |
---|---|
主出版物標題 | ROCLING 2021 - Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing |
編輯 | Lung-Hao Lee, Chia-Hui Chang, Kuan-Yu Chen |
發行者 | The Association for Computational Linguistics and Chinese Language Processing (ACLCLP) |
頁面 | 280-285 |
頁數 | 6 |
ISBN(電子) | 9789869576949 |
出版狀態 | 已出版 - 2021 |
事件 | 33rd Conference on Computational Linguistics and Speech Processing, ROCLING 2021 - Taoyuan, Taiwan 持續時間: 15 10月 2021 → 16 10月 2021 |
出版系列
名字 | ROCLING 2021 - Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 33rd Conference on Computational Linguistics and Speech Processing, ROCLING 2021 |
---|---|
國家/地區 | Taiwan |
城市 | Taoyuan |
期間 | 15/10/21 → 16/10/21 |
指紋
深入研究「Generative Adversarial Networks based on Mixed-Attentions for Citation Intent Classification in Scientific Publications」主題。共同形成了獨特的指紋。專案
- 1 已完成