Generalized carleson measure spaces and their applications

Chin Cheng Lin, Kunchuan Wang

研究成果: 雜誌貢獻期刊論文同行評審

4 引文 斯高帕斯(Scopus)

摘要

We introduce the generalized Carleson measure spaces CMO r α,q that extend BMO. Using Frazier and Jawerth's ψ-transform and sequence spaces, we show that, for α ∈ ℝ and 0 < p ≤ 1, the duals of homogeneous Triebel-Lizorkin spaces F p α,q for 1 < q < ∞ and 0 < q < 1 are CMO -αq' (q'/p)-(q'/q) and CMO r -α+ (n/p)-n,∞ (for any r ∈ ℝ), respectively. As applications, we give the necessary and sufficient conditions for the boundedness of wavelet multipliers and paraproduct operators acting on homogeneous Triebel-Lizorkin spaces.

原文???core.languages.en_GB???
文章編號879073
期刊Abstract and Applied Analysis
2012
DOIs
出版狀態已出版 - 2012

指紋

深入研究「Generalized carleson measure spaces and their applications」主題。共同形成了獨特的指紋。

引用此