Generalized Besov spaces and Triebel-Lizorkin spaces

Huikun Jiang, Chin Cheng Lin

研究成果: 雜誌貢獻期刊論文同行評審

摘要

In this paper the classical Besov spaces B p,q s and Triebel-Lizorkin spaces F p,q s for s are generalized in an isotropy way with the smoothness weights {|2j|-ln α}∞-j = 0. These generalized Besov spaces and Triebel-Lizorkin spaces, denoted by B-p,q α and F-p,q α for αk and k , respectively, keep many interesting properties, such as embedding theorems (with scales property for all smoothness weights), lifting properties for all parameters \vec α, and duality for index 0 < p < ∞. By constructing an example, it is shown that there are infinitely many generalized Besov spaces and generalized Triebel-Lizorkin spaces lying between B p,q/s and t>s B p,q t , and between F p,q s and t>s F p,q t , respectively.

原文???core.languages.en_GB???
頁(從 - 到)336-350
頁數15
期刊Analysis in Theory and Applications
24
發行號4
DOIs
出版狀態已出版 - 12月 2008

指紋

深入研究「Generalized Besov spaces and Triebel-Lizorkin spaces」主題。共同形成了獨特的指紋。

引用此