G-invariant Szegő kernel asymptotics and CR reduction

Chin Yu Hsiao, Rung Tzung Huang

研究成果: 雜誌貢獻期刊論文同行評審

2 引文 斯高帕斯(Scopus)

摘要

Let (X, T1 , 0X) be a compact connected orientable CR manifold of dimension 2 n+ 1 with non-degenerate Levi curvature. Assume that X admits a connected compact Lie group G action. Under certain natural assumptions about the group G action, we show that the G-invariant Szegő kernel for (0, q) forms is a complex Fourier integral operator, smoothing away μ- 1(0) and there is a precise description of the singularity near μ- 1(0) , where μ denotes the CR moment map. We apply our result to the case when X admits a transversal CR S1 action and deduce an asymptotic expansion for the mth Fourier component of the G-invariant Szegő kernel for (0, q) forms as m→ + ∞ and when q= 0 , we recover Xiaonan Ma and Weiping Zhang’s result about the existence of the G-invariant Bergman kernel for ample line bundles. As an application, we show that if m large enough, quantization commutes with reduction.

原文???core.languages.en_GB???
文章編號47
期刊Calculus of Variations and Partial Differential Equations
60
發行號1
DOIs
出版狀態已出版 - 2月 2021

指紋

深入研究「G-invariant Szegő kernel asymptotics and CR reduction」主題。共同形成了獨特的指紋。

引用此