## 摘要

Given a graph G and a set S⊆ V(G) a vertex v is said to be _{3} -dominated by a vertex w in S if either v=w, or v∉ S and there exists a vertex u in V(G)-S such that P:wuv is a path in G. A set S⊆ V(G)is an _{3} -dominating set of G if every vertex v is _{3} -dominated by a vertex w in S.The _{3} -domination number of G, denoted by γ F_{3}(G), is the minimum cardinality of an _{3} -dominating set of G. In this paper, we study the _{3} -domination of Cartesian product of graphs, and give formulas to compute the _{3} -domination number of P_{m}×P_{n}and P_{m}× C_{n}for special m,n.

原文 | ???core.languages.en_GB??? |
---|---|

頁（從 - 到） | 400-413 |

頁數 | 14 |

期刊 | Journal of Combinatorial Optimization |

卷 | 28 |

發行號 | 2 |

DOIs | |

出版狀態 | 已出版 - 8月 2014 |

## 指紋

深入研究「F_{3}-domination problem of graphs」主題。共同形成了獨特的指紋。