Fractional Integration on Mixed Norm Spaces. I

Feng Guo, Xiang Fang, Shengzhao Hou, Xiaolin Zhu

研究成果: 雜誌貢獻期刊論文同行評審

摘要

In this paper we characterize completely the septuple (Formula presented.) such that the fractional integration operator It, of order t∈C, is bounded between two mixed norm spaces: (Formula presented.) We treat three types of definitions for It: Hadamard, Flett, and Riemann-Liouville. Our main result (Theorem 2) extends that of Buckley-Koskela-Vukotić in 1999 on the Bergman spaces (Theorem B), and the case t=0 recovers the embedding theorem of Arévalo in 2015 (Corollary 3). The corresponding result for the Hardy spaces Hp(D), of type Riemann-Liouville, is due to Hardy and Littlewood in 1932.

原文???core.languages.en_GB???
文章編號45
期刊Complex Analysis and Operator Theory
18
發行號3
DOIs
出版狀態已出版 - 4月 2024

指紋

深入研究「Fractional Integration on Mixed Norm Spaces. I」主題。共同形成了獨特的指紋。

引用此