TY - JOUR
T1 - Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches
AU - Das, Jayshree
AU - Mahato, Susanta
AU - Joshi, Pawan Kumar
AU - Liou, Yuei An
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - Recurring forest fires disturb ecological balance, impact socio-economic harmony, and raise global concern. This study implements multiple statistical and weighted modelling approaches to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio (FR), Certainty Factor (CF), Natural Risk Factor (NRF), Bivariate statistical (Wi and Wf), Analytical Hierarchy Process (AHP), and Logistic Regression (LR) were used in the study. Forest fire inventory (2001 to 2018) mapping was done using forest fire points captured by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Fire responsible components, namely, topography (which has four variables), climate (5), biophysics (8) and disturbance (4) were used as inputs to the modelling approaches. Multicollinearity analysis was carried out to examine the association and remove the highly-correlated variables before performing the modeling. Validation of model prediction levels was done using Area Under the Receiver Operating Characteristic Curve (ROC curve-AUC) value. The results reveal that the areas with west and southwest orientations, and moderate slope demarcate higher susceptibility to forest fire. High precipitation areas with lower temperature but ample solar radiation increase their susceptibility to forest fire. Mixed deciduous forest type with ample solar radiation, higher NDVI, lower NDWI and lower TWI values exhibits higher susceptibility. Model validation shows that LR (with AUC = 0.809) outperforms other models used in the study. To minimize the risk of fire and frame with proper management plans for the study area, susceptibility mapping using satellite imageries, GIS technique, and modelling approaches is highly recommended.
AB - Recurring forest fires disturb ecological balance, impact socio-economic harmony, and raise global concern. This study implements multiple statistical and weighted modelling approaches to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio (FR), Certainty Factor (CF), Natural Risk Factor (NRF), Bivariate statistical (Wi and Wf), Analytical Hierarchy Process (AHP), and Logistic Regression (LR) were used in the study. Forest fire inventory (2001 to 2018) mapping was done using forest fire points captured by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Fire responsible components, namely, topography (which has four variables), climate (5), biophysics (8) and disturbance (4) were used as inputs to the modelling approaches. Multicollinearity analysis was carried out to examine the association and remove the highly-correlated variables before performing the modeling. Validation of model prediction levels was done using Area Under the Receiver Operating Characteristic Curve (ROC curve-AUC) value. The results reveal that the areas with west and southwest orientations, and moderate slope demarcate higher susceptibility to forest fire. High precipitation areas with lower temperature but ample solar radiation increase their susceptibility to forest fire. Mixed deciduous forest type with ample solar radiation, higher NDVI, lower NDWI and lower TWI values exhibits higher susceptibility. Model validation shows that LR (with AUC = 0.809) outperforms other models used in the study. To minimize the risk of fire and frame with proper management plans for the study area, susceptibility mapping using satellite imageries, GIS technique, and modelling approaches is highly recommended.
KW - forest fire susceptibility
KW - prediction
KW - spatial mapping
KW - statistical modelling
KW - validation
UR - http://www.scopus.com/inward/record.url?scp=85149956562&partnerID=8YFLogxK
U2 - 10.3390/rs15051340
DO - 10.3390/rs15051340
M3 - 期刊論文
AN - SCOPUS:85149956562
SN - 2072-4292
VL - 15
JO - Remote Sensing
JF - Remote Sensing
IS - 5
M1 - 1340
ER -