跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
Forecasting hourly PM
2.5
concentration with an optimized LSTM model
Huynh Duy Tran, Hsiang Yu Huang, Jhih Yuan Yu,
Sheng Hsiang Wang
環境監測技術聯合中心
大氣科學學系
研究成果
:
雜誌貢獻
›
期刊論文
›
同行評審
6
引文 斯高帕斯(Scopus)
總覽
指紋
研究計畫
(1)
指紋
深入研究「Forecasting hourly PM
2.5
concentration with an optimized LSTM model」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Particulate Matter 2.5 (PM2.5)
100%
PM2.5 Concentration
100%
Long-Short
100%
Memory Models
100%
Root Mean Square Error
66%
Air Quality
66%
Air Quality Monitoring
66%
Taiwan
33%
Urban Areas
33%
Seasonal Variation
33%
Public Health
33%
Machine Learning
33%
Strong Correlation
33%
Deep Learning Methods
33%
Result Prediction
33%
Aerosol Optical Depth
33%
Deep Learning Algorithm
33%
Pearson Correlation Coefficient
33%
Timely Information
33%
Model Setting
33%
Spatial Representation
33%
Urban Air
33%
PM2.5 Prediction
33%
Polluted Area
33%
Sensitivity Assessment
33%
Highest Root
33%
Predictable Information
33%
Model Predictability
33%
Training Units
33%
Engineering
Long Short-Term Memory
100%
Particular Matter 2.5
100%
Air Quality
66%
Root Mean Square Error
33%
Deep Learning
33%
Input Parameter
16%
Powerful Tool
16%
Model Input
16%
Aerosol Optical Depth
16%
Quality Assessment
16%
Pearsons Linear Correlation Coefficient
16%
Earth and Planetary Sciences
Particular Matter 2.5
100%
Air Quality
50%
Root-Mean-Square Error
33%
Taiwan
16%
Annual Variation
16%
Correlation Coefficient
16%
Machine Learning
16%
Air Quality Monitoring
16%