Finite-size corrections and scaling for the triangular lattice dimer model with periodic boundary conditions

N. Sh Izmailian, K. B. Oganesyan, Ming Chya Wu, Chin Kun Hu

研究成果: 雜誌貢獻期刊論文同行評審

33 引文 斯高帕斯(Scopus)

摘要

We analyze the partition function of the dimer model on M×N triangular lattice wrapped on the torus obtained by Fendley, Moessner, and Sondhi [Phys. Rev. B 66, 214513, (2002)]. Based on such an expression, we then extend the algorithm of Ivashkevich, Izmailian, and Hu [J. Phys. A 35, 5543 (2002)] to derive the exact asymptotic expansion of the first and second derivatives of the logarithm of the partition function at the critical point and find that the aspect-ratio dependence of finite-size corrections and the finite-size scaling functions are sensitive to the parity of the number of lattice sites along the lattice axis.

原文???core.languages.en_GB???
文章編號016128
期刊Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
73
發行號1
DOIs
出版狀態已出版 - 1月 2006

指紋

深入研究「Finite-size corrections and scaling for the triangular lattice dimer model with periodic boundary conditions」主題。共同形成了獨特的指紋。

引用此