Finite Blaschke products of contractions

Hwa Long Gau, Pei Yuan Wu

研究成果: 雜誌貢獻期刊論文同行評審

9 引文 斯高帕斯(Scopus)

摘要

Let A be a contraction on Hilbert space H and φ a finite Blaschke product. In this paper, we consider the problem when the norm of φ(A) is equal to 1. We show that (1) ∥φ(A)∥=1 if and only if ∥A k∥=1, where k is the number of zeros of φ counting multiplicity, and (2) if H is finite-dimensional and A has no eigenvalue of modulus 1, then the largest integer l for which ∥A l∥=1 is at least m/(n-m), where n=dim H and m=dim ker(I-A*A), and, moreover, l=n-1 if and only if m=n-1.

原文???core.languages.en_GB???
頁(從 - 到)359-370
頁數12
期刊Linear Algebra and Its Applications
368
DOIs
出版狀態已出版 - 15 7月 2003

指紋

深入研究「Finite Blaschke products of contractions」主題。共同形成了獨特的指紋。

引用此