Far-field condition for light-emitting diode arrays

Ivan Moreno, Ching Cherng Sun, Rumen Ivanov

研究成果: 雜誌貢獻期刊論文同行評審

56 引文 斯高帕斯(Scopus)

摘要

In practice, any cluster of light-emitting diodes (LEDs) can be modeled or measured as a directional point source if the detector is far enough away from the cluster. We propose a far-zone condition for measuring or modeling propagation of light from an LED array. An equation gives the far-field distance as a function of the LED radiation pattern, array geometry, and number of LEDs. The far field is shorter for high packaging density clusters, and the far field considerably increases with increasing beam directionality of LEDs. In contrast with the classical rule of thumb (5 times the source size), the near zone of an array with highly directional LEDs can extend to more than 60 times the array size. We also analyze the effect of introducing random variations of light flux among LEDs of the array, which shows that far-field variability is low in high packaging density arrays.

原文???core.languages.en_GB???
頁(從 - 到)1190-1197
頁數8
期刊Applied Optics
48
發行號6
DOIs
出版狀態已出版 - 20 2月 2009

指紋

深入研究「Far-field condition for light-emitting diode arrays」主題。共同形成了獨特的指紋。

引用此