Face recognition and gender classification using orthogonal nearest neighbour feature line embedding regular paper

Gang Feng Ho, Ying Nong Chen, Chin Chuan Han, Kuo Chin Fan

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

In this paper, a novel manifold learning algorithm for face recognition and gender classification - orthogonal nearest neighbour feature line embedding (ONNFLE) - is proposed. Three of the drawbacks of the nearest feature space embedding (NFSE) method are solved: the extrapolation/interpolation error, high computational load and non-orthogonal eigenvector problems. The extrapolation error occurs if the distance from a specified point to one line is small when that line passes through two farther points. The scatter matrix generated by the invalid discriminant vectors does not efficiently preserve the locally topological structure - incorrect selection reduces recognition. To remedy this, the nearest neighbour (NN) selection strategy was used in the proposed method. In addition, the high computational load was reduced using a selection strategy. The last problem involved solving the nonorthogonal eigenvectors found with the NFSE algorithm. The proposed algorithm generated orthogonal bases possessing more discriminating power. Experiments were conducted to demonstrate the effectiveness of the proposed algorithm.

原文???core.languages.en_GB???
文章編號105
期刊International Journal of Advanced Robotic Systems
9
DOIs
出版狀態已出版 - 4 10月 2012

指紋

深入研究「Face recognition and gender classification using orthogonal nearest neighbour feature line embedding regular paper」主題。共同形成了獨特的指紋。

引用此