每年專案
摘要
In this work, a SnO 2 bilayers photodiode device is designed, which consists of a thin SnO 2 photocurrent generation layer and a SnO 2 thick layer on the glass substrate. The SnO 2 photocurrent generation layer with high oxygen vacancy concentration is intentionally prepared. With annealing in oxygen ambient, an electrical potential would be built in the surface space charge region in the thin SnO 2 photocurrent generation layer, which would drive the photocarriers down to and flow in the photocarrier transportation layer, i.e., the high-mobility SnO 2 thick film on the glass substrate. The designed SnO 2 bilayers photodiode device could enhance photocurrent generation and resolution for the SnO 2 -based UV-photodetectors. It is concluded that the width of surface space charge region is the key factor for the enhancement of lifetime of photocarriers and photocurrent generation of the current SnO 2 bilayers photodiode. Based on the present experimental results, the width of the surface space charge region is expected to be nearly or less than 3 nm. Moreover, in this work, a theoretical model is developed to calculate the width of the surface space charge region. The calculated width of the surface space charge region (3.26 nm) is close enough to support the present experimental observation.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 1800679 |
期刊 | Advanced Electronic Materials |
卷 | 5 |
發行號 | 4 |
DOIs | |
出版狀態 | 已出版 - 4月 2019 |
指紋
深入研究「Experiment and Theoretical Calculation of the Surface Space Charge Region Effect on Photocurrent Generation of SnO 2 Bilayer Photodiode Devices」主題。共同形成了獨特的指紋。專案
- 3 已完成
-
探討在不同微結構銅中鈀原子之擴散行為並藉此發展低溫銅鈀固態擴散鍵合應用於氮化鎵發光二極體封裝製程(3/3)
Liu, C.-Y. (PI)
1/08/18 → 31/07/19
研究計畫: Research
-
-