Evaluation of Data Augmentation on Surface Defect Detection

Isack Farady, Chih Yang Lin, Fityanul Akhyar, R. Roshini, John Sahaya Rani Alex

研究成果: 書貢獻/報告類型會議論文篇章同行評審

3 引文 斯高帕斯(Scopus)

摘要

In this paper, we have investigated and benchmarked the augmentation approach of image augmentation to increase or provide a different result in detection accuracy compared to the basic method without augmentation. We explored two different methods of pixel-wise operations: pixel domain manipulation and spatial domain transformation to analyze the effect of increasing data for typical defect detection problems. We used two object detection models Faster R-CNN and Cascade R-CNN on top of ResNet-50 as our baseline models. To gain accuracy, we found that the effectiveness of data augmentation for defect detection is influenced by network complexity and the surface defect properties.

原文???core.languages.en_GB???
主出版物標題2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665433280
DOIs
出版狀態已出版 - 2021
事件8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021 - Penghu, Taiwan
持續時間: 15 9月 202117 9月 2021

出版系列

名字2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
國家/地區Taiwan
城市Penghu
期間15/09/2117/09/21

指紋

深入研究「Evaluation of Data Augmentation on Surface Defect Detection」主題。共同形成了獨特的指紋。

引用此