每年專案
摘要
Deep neural network (DNN) is one effective technique used for the artificial intelligence applications. A DNN consists of a large amount of neurons arranged in a form of multilayers. Typically, a DNN has over-provisioning neurons such that it has inherent fault-tolerance capability. However, how to evaluate the fault-tolerance capability of DNNs is a question. In this paper, we propose a simulator to estimate the loss of inference accuracy due to the faults in a DNN model or the memory faults in hardware accelerator. The simulator is implemented based on the platforms of Keras and Tensorflow. It can evaluate the fault-tolerance capability of a DNN at model and hardware levels.
原文 | ???core.languages.en_GB??? |
---|---|
主出版物標題 | Proceedings - 34th IEEE International System-on-Chip Conference, SOCC 2021 |
編輯 | Gang Qu, Jinjun Xiong, Danella Zhao, Venki Muthukumar, Md Farhadur Reza, Ramalingam Sridhar |
發行者 | IEEE Computer Society |
頁面 | 272-277 |
頁數 | 6 |
ISBN(電子) | 9781665429313 |
DOIs | |
出版狀態 | 已出版 - 2021 |
事件 | 34th IEEE International System-on-Chip Conference, SOCC 2021 - Virtual, Online, United States 持續時間: 14 9月 2021 → 17 9月 2021 |
出版系列
名字 | International System on Chip Conference |
---|---|
卷 | 2021-September |
ISSN(列印) | 2164-1676 |
ISSN(電子) | 2164-1706 |
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 34th IEEE International System-on-Chip Conference, SOCC 2021 |
---|---|
國家/地區 | United States |
城市 | Virtual, Online |
期間 | 14/09/21 → 17/09/21 |
指紋
深入研究「Evaluating the Impact of Fault-Tolerance Capability of Deep Neural Networks Caused by Faults」主題。共同形成了獨特的指紋。專案
- 2 已完成