每年專案
摘要
Estimation of tropical cyclones (TCs) intensity is crucial for disaster reduction and risk management. This study aims to estimate TC intensity using ensemble machine learning models. We utilized four Random Forest (RF) models to predict TC intensity. The input factors include TC's location, central pressure, distance to land, landfall in the next six-hour, storm speed, and storm direction, which are extracted from the International Best Track Archive for Climate Stewardship Version 4 (IBTrACS V4). This dataset was divided into four sub-datasets based on the ENSO phases (Neutral, El Niño, and La Niña). Inputs for the RF models were taken from each sub-dataset separately. Results show that central pressure has the greatest effect on TC intensity estimate with the maximal root mean square error (RMSE) of 4.92 knots (equivalent to 2.50 m/s) and accuracy of 94-96 %.
原文 | ???core.languages.en_GB??? |
---|---|
主出版物標題 | Proceedings - 2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022 |
發行者 | Institute of Electrical and Electronics Engineers Inc. |
ISBN(電子) | 9781665491389 |
DOIs | |
出版狀態 | 已出版 - 2022 |
事件 | 2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022 - Changhua, Taiwan 持續時間: 14 10月 2022 → 16 10月 2022 |
出版系列
名字 | Proceedings - 2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022 |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022 |
---|---|
國家/地區 | Taiwan |
城市 | Changhua |
期間 | 14/10/22 → 16/10/22 |
指紋
深入研究「ENSO-based Ensemble Learning Approach for Tropical Cyclone Intensity Estimation」主題。共同形成了獨特的指紋。專案
- 1 已完成