ENSO-based Ensemble Learning Approach for Tropical Cyclone Intensity Estimation

Truong Vinh Le, Yuei An Liou

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

Estimation of tropical cyclones (TCs) intensity is crucial for disaster reduction and risk management. This study aims to estimate TC intensity using ensemble machine learning models. We utilized four Random Forest (RF) models to predict TC intensity. The input factors include TC's location, central pressure, distance to land, landfall in the next six-hour, storm speed, and storm direction, which are extracted from the International Best Track Archive for Climate Stewardship Version 4 (IBTrACS V4). This dataset was divided into four sub-datasets based on the ENSO phases (Neutral, El Niño, and La Niña). Inputs for the RF models were taken from each sub-dataset separately. Results show that central pressure has the greatest effect on TC intensity estimate with the maximal root mean square error (RMSE) of 4.92 knots (equivalent to 2.50 m/s) and accuracy of 94-96 %.

原文???core.languages.en_GB???
主出版物標題Proceedings - 2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665491389
DOIs
出版狀態已出版 - 2022
事件2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022 - Changhua, Taiwan
持續時間: 14 10月 202216 10月 2022

出版系列

名字Proceedings - 2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2022 IET International Conference on Engineering Technologies and Applications, IET-ICETA 2022
國家/地區Taiwan
城市Changhua
期間14/10/2216/10/22

指紋

深入研究「ENSO-based Ensemble Learning Approach for Tropical Cyclone Intensity Estimation」主題。共同形成了獨特的指紋。

引用此