TY - JOUR
T1 - Embedding theorem on spaces of homogeneous type
AU - Han, Yongshen
AU - Lin, Chin Cheng
PY - 2002
Y1 - 2002
N2 - In [5] the embedding theorem for the Besov spaces Ḃpα,q with -ε < α < ε and 1 ≤ p, q ≤ ∞, and Triebel-Lizorkin spaces Ḟpα,q with -ε < α < ε and 1 < p, q < ∞, on spaces of homogeneous type was obtained. In this article the embedding theorem is generalized to the Besov spaces Ḃpα,q with p0 < p ≤ ∞ and 0 < q ≤ ∞ for p0 < 1, and the Triebel-Lizorkin spaces Ḟpα,q with p1 < p < ∞ and p1 < q < ∞ for p1 < 1. The proofs are new even for ℝn.
AB - In [5] the embedding theorem for the Besov spaces Ḃpα,q with -ε < α < ε and 1 ≤ p, q ≤ ∞, and Triebel-Lizorkin spaces Ḟpα,q with -ε < α < ε and 1 < p, q < ∞, on spaces of homogeneous type was obtained. In this article the embedding theorem is generalized to the Besov spaces Ḃpα,q with p0 < p ≤ ∞ and 0 < q ≤ ∞ for p0 < 1, and the Triebel-Lizorkin spaces Ḟpα,q with p1 < p < ∞ and p1 < q < ∞ for p1 < 1. The proofs are new even for ℝn.
KW - Besov and Triebel-Lizorkin spaces
KW - Discrete Calderón formula
KW - Embedding theorem
KW - Spaces of homogeneous type
UR - http://www.scopus.com/inward/record.url?scp=0036432725&partnerID=8YFLogxK
U2 - 10.1007/s00041-002-0014-5
DO - 10.1007/s00041-002-0014-5
M3 - 期刊論文
AN - SCOPUS:0036432725
SN - 1069-5869
VL - 8
SP - 291
EP - 307
JO - Journal of Fourier Analysis and Applications
JF - Journal of Fourier Analysis and Applications
IS - 3
ER -