TY - JOUR
T1 - Electrical stimulation through conductive substrate to enhance osteo-differentiation of human dental pulp-derived stem cells
AU - Cheng, Yu Che
AU - Chen, Chien Hsun
AU - Kuo, Hong Wei
AU - Yen, Ting Ling
AU - Mao, Ya Yuan
AU - Hu, Wei Wen
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Human dental pulp-derived stem cells (hDPSCs) are promising cellular sources for bone healing. The acceleration of their differentiation should be beneficial to their clinical application. Therefore, a conductive polypyrrole (PPy)-made electrical stimulation (ES) device was fabricated to provide direct-current electric field (DCEF) treatment, and its effect on osteo-differentiation of hDPSCs was investigated in this study. To determine the optimal treating time, electrical field of 0.33 V/cm was applied to hDPSCs once for 4 h on different days after the osteo-induction. The alizarin red S staining results suggested that ES accelerated the mineralization rates of hDPSCs. The quantification analysis results revealed a nearly threefold enhancement in calcium deposition by ES at day 0, 2, and 4, whereas the promotion effect in later stages was in vain. To determine the ES-mediated signaling pathway, the expression of genes in the bone morphogenetic protein (BMP) family and related receptors were quantified using qPCR. In the early stages of osteo-differentiation, the mRNA levels of BMP2, BMP3, BMP4, and BMP5 were increased significantly in the ES groups, indicating that these genes were involved in the specific signaling routes induced by ES. We are the first using DCEF to improve the osteo-differentiation of hDPSCs, and our results promise the therapeutic applications of hDPSCs on cell-based bone tissue engineering.
AB - Human dental pulp-derived stem cells (hDPSCs) are promising cellular sources for bone healing. The acceleration of their differentiation should be beneficial to their clinical application. Therefore, a conductive polypyrrole (PPy)-made electrical stimulation (ES) device was fabricated to provide direct-current electric field (DCEF) treatment, and its effect on osteo-differentiation of hDPSCs was investigated in this study. To determine the optimal treating time, electrical field of 0.33 V/cm was applied to hDPSCs once for 4 h on different days after the osteo-induction. The alizarin red S staining results suggested that ES accelerated the mineralization rates of hDPSCs. The quantification analysis results revealed a nearly threefold enhancement in calcium deposition by ES at day 0, 2, and 4, whereas the promotion effect in later stages was in vain. To determine the ES-mediated signaling pathway, the expression of genes in the bone morphogenetic protein (BMP) family and related receptors were quantified using qPCR. In the early stages of osteo-differentiation, the mRNA levels of BMP2, BMP3, BMP4, and BMP5 were increased significantly in the ES groups, indicating that these genes were involved in the specific signaling routes induced by ES. We are the first using DCEF to improve the osteo-differentiation of hDPSCs, and our results promise the therapeutic applications of hDPSCs on cell-based bone tissue engineering.
KW - Bone morphogenesis proteins
KW - Direct current electric field
KW - Human dental pulp stem cells
KW - Osteo-differentiation
KW - Substrate-mediated electrical stimulation
UR - http://www.scopus.com/inward/record.url?scp=85079667025&partnerID=8YFLogxK
U2 - 10.3390/APP9183938
DO - 10.3390/APP9183938
M3 - 期刊論文
AN - SCOPUS:85079667025
SN - 2076-3417
VL - 9
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 18
M1 - 3938
ER -