Ejecta from the DART-produced active asteroid Dimorphos

Jian Yang Li, Masatoshi Hirabayashi, Tony L. Farnham, Jessica M. Sunshine, Matthew M. Knight, Gonzalo Tancredi, Fernando Moreno, Brian Murphy, Cyrielle Opitom, Steve Chesley, Daniel J. Scheeres, Cristina A. Thomas, Eugene G. Fahnestock, Andrew F. Cheng, Linda Dressel, Carolyn M. Ernst, Fabio Ferrari, Alan Fitzsimmons, Simone Ieva, Stavro L. IvanovskiTheodore Kareta, Ludmilla Kolokolova, Tim Lister, Sabina D. Raducan, Andrew S. Rivkin, Alessandro Rossi, Stefania Soldini, Angela M. Stickle, Alison Vick, Jean Baptiste Vincent, Harold A. Weaver, Stefano Bagnulo, Michele T. Bannister, Saverio Cambioni, Adriano Campo Bagatin, Nancy L. Chabot, Gabriele Cremonese, R. Terik Daly, Elisabetta Dotto, David A. Glenar, Mikael Granvik, Pedro H. Hasselmann, Isabel Herreros, Seth Jacobson, Martin Jutzi, Tomas Kohout, Fiorangela La Forgia, Monica Lazzarin, Zhong Yi Lin, Ramin Lolachi, Alice Lucchetti, Rahil Makadia, Elena Mazzotta Epifani, Patrick Michel, Alessandra Migliorini, Nicholas A. Moskovitz, Jens Ormö, Maurizio Pajola, Paul Sánchez, Stephen R. Schwartz, Colin Snodgrass, Jordan Steckloff, Timothy J. Stubbs, Josep M. Trigo-Rodríguez

研究成果: 雜誌貢獻期刊論文同行評審

28 引文 斯高帕斯(Scopus)

摘要

Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.

原文???core.languages.en_GB???
頁(從 - 到)452-456
頁數5
期刊Nature
616
發行號7957
DOIs
出版狀態已出版 - 20 4月 2023

指紋

深入研究「Ejecta from the DART-produced active asteroid Dimorphos」主題。共同形成了獨特的指紋。

引用此