Efficient Scale-Recurrent Network Using Generative Adversarial Network for Image Deblurring

Wei Hsiang Hsu, Chih Wei Tang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Ubiquitous blurry images degrade viewing experiences and performance of video analysis. To be applicable to consumer electronics, the large amount of parameters and high computational load of deblurring network have to be avoided. The existing SRN+ has a small number of parameters (3.9M) and comparable performance. To improve the quality of outputs of a deblurring network (e.g., SRN+) without changing its architecture, this paper proposes the pseudo label based order task for training the discriminator. The proposed funnel soft label further reduces the problem of vanishing gradient during training SRN+ (generator), and the adversarial loss combined with weighted scale-level losses improves quality of deblurring. For GoPro dataset, the proposed scheme outperforms the light version of the state-of-the-art MPRNet in PSNR (+1dB) and number of parameters (70%).

原文???core.languages.en_GB???
主出版物標題2022 IEEE International Conference on Consumer Electronics, ICCE 2022
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665441544
DOIs
出版狀態已出版 - 2022
事件2022 IEEE International Conference on Consumer Electronics, ICCE 2022 - Virtual, Online, United States
持續時間: 7 1月 20229 1月 2022

出版系列

名字Digest of Technical Papers - IEEE International Conference on Consumer Electronics
2022-January
ISSN(列印)0747-668X

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2022 IEEE International Conference on Consumer Electronics, ICCE 2022
國家/地區United States
城市Virtual, Online
期間7/01/229/01/22

指紋

深入研究「Efficient Scale-Recurrent Network Using Generative Adversarial Network for Image Deblurring」主題。共同形成了獨特的指紋。

引用此