TY - JOUR
T1 - Effects of TMS over premotor and superior temporal cortices on biological motion perception
AU - van Kemenade, Bianca Michelle
AU - Muggleton, Neil
AU - Walsh, Vincent
AU - Saygin, Ayse Pinar
PY - 2012/4
Y1 - 2012/4
N2 - Using MRI-guided off-line TMS, we targeted two areas implicated in biological motion processing: ventral premotor cortex (PMC) and posterior STS (pSTS), plus a control site (vertex). Participants performed a detection task on noise-masked point-light displays of human animations and scrambled versions of the same stimuli. Perceptual thresholds were determined individually. Performance was measured before and after 20 sec of continuous theta burst stimulation of PMC, pSTS, and control (each tested on different days). A matched non-biological object motion task (detecting point-light displays of translating polygons) served as a further control. Data were analyzed within the signal detection framework. Sensitivity (d′) significantly decreased after TMS of PMC. There was a marginally significant decline in d′ after TMS of pSTS but not of control site. Criterion (response bias) was also significantly affected by TMS over PMC. Specifically, subjects made significantly more false alarms post-TMS of PMC. These effects were specific to biological motion and not found for the nonbiolog-ical control task. To summarize, we report that TMS over PMC reduces sensitivity to biological motion perception. Furthermore, pSTS and PMC may have distinct roles in biological motion processing as behavioral performance differs following TMS in each area. Only TMS over PMC led to a significant increase in false alarms, which was not found for other brain areas or for the control task. TMS of PMC may have interfered with refining judgments about biological motion perception, possibly because access to the perceiver's own motor representations was compromised.
AB - Using MRI-guided off-line TMS, we targeted two areas implicated in biological motion processing: ventral premotor cortex (PMC) and posterior STS (pSTS), plus a control site (vertex). Participants performed a detection task on noise-masked point-light displays of human animations and scrambled versions of the same stimuli. Perceptual thresholds were determined individually. Performance was measured before and after 20 sec of continuous theta burst stimulation of PMC, pSTS, and control (each tested on different days). A matched non-biological object motion task (detecting point-light displays of translating polygons) served as a further control. Data were analyzed within the signal detection framework. Sensitivity (d′) significantly decreased after TMS of PMC. There was a marginally significant decline in d′ after TMS of pSTS but not of control site. Criterion (response bias) was also significantly affected by TMS over PMC. Specifically, subjects made significantly more false alarms post-TMS of PMC. These effects were specific to biological motion and not found for the nonbiolog-ical control task. To summarize, we report that TMS over PMC reduces sensitivity to biological motion perception. Furthermore, pSTS and PMC may have distinct roles in biological motion processing as behavioral performance differs following TMS in each area. Only TMS over PMC led to a significant increase in false alarms, which was not found for other brain areas or for the control task. TMS of PMC may have interfered with refining judgments about biological motion perception, possibly because access to the perceiver's own motor representations was compromised.
UR - http://www.scopus.com/inward/record.url?scp=84857550274&partnerID=8YFLogxK
U2 - 10.1162/jocn_a_00194
DO - 10.1162/jocn_a_00194
M3 - 期刊論文
C2 - 22264195
AN - SCOPUS:84857550274
SN - 0898-929X
VL - 24
SP - 896
EP - 904
JO - Journal of Cognitive Neuroscience
JF - Journal of Cognitive Neuroscience
IS - 4
ER -