Effects of Anion Coadsorption on the Self-Assembly of 11-Acryloylamino Undecanoic Acid on an Au(111) Electrode

Yi Ting Huang, Jia Yin Chen, Chiao An Hsieh, Yamuna Ezhumalai, Chun Jen Huang, Shuehlin Yau

研究成果: 雜誌貢獻期刊論文同行評審

摘要

11-acryloylamino undecanoic acid (AAUA) is a versatile polymerizable surfactant that has been applied to coat medical devices, and these applications can benefit from a fundamental understanding of its interaction with a metal substrate. Cyclic voltammetry and in situ scanning tunneling microscopy (STM) were used to examine the adsorption configuration of AAUA molecules on an ordered Au(111) electrode and their mutual interactions, as AAUA was adsorbed from a methanol dosing solution. In addition to the van der Waals force between the aliphatic groups, the hydrogen bonding between the carboxylic acid and acrylamide groups was also important to guide the spatial arrangement of AAUA admolecules on the Au electrode. The −COOH group of AAUA admolecule likely dissociated in neutral media to −COO-, which formed hydrogen bonds with H2PO4- in phosphate buffer solution (PBS). This interaction between the AAUA admolecules and ions in the electrolyte resulted in different electrochemical characteristics observed in phosphate buffer solution (PBS) and potassium sulfate (K2SO4). Molecular-resolution STM imaging revealed distinctly different AAUA spatial structures on the Au electrode in PBS and K2SO4. Shifting the potential positively to 0.5 V (versus Ag/AgCl) led to lifting of the reconstructed Au(111) to the (1 × 1) phase and the dissolution of the ordered AAUA film, suggesting that the orientation of the AAUA admolecule was altered. The ordered AAUA adlayer could be partially recovered by shifting the potential negatively.

原文???core.languages.en_GB???
期刊ACS Omega
DOIs
出版狀態已被接受 - 2024

指紋

深入研究「Effects of Anion Coadsorption on the Self-Assembly of 11-Acryloylamino Undecanoic Acid on an Au(111) Electrode」主題。共同形成了獨特的指紋。

引用此