摘要
Hearing-in-noise (HIN) ability is crucial in speech and music communication. Recent evidence suggests that absolute pitch (AP), the ability to identify isolated musical notes, is associated with HIN benefits. A theoretical account postulates a link between AP ability and neural network indices of segregation. However, how AP ability modulates the brain activation and functional connectivity underlying HIN perception remains unclear. Here we used functional magnetic resonance imaging to contrast brain responses among a sample (n = 45) comprising 15 AP musicians, 15 non-AP musicians, and 15 non-musicians in perceiving Mandarin speech and melody targets under varying signal-to-noise ratios (SNRs: No-Noise, 0, −9 dB). Results reveal that AP musicians exhibited increased activation in auditory and superior frontal regions across both HIN domains (music and speech), irrespective of noise levels. Notably, substantially higher sensorimotor activation was found in AP musicians when the target was music compared to speech. Furthermore, we examined AP effects on neural connectivity using psychophysiological interaction analysis with the auditory cortex as the seed region. AP musicians showed decreased functional connectivity with the sensorimotor and middle frontal gyrus compared to non-AP musicians. Crucially, AP differentially affected connectivity with parietal and frontal brain regions depending on the HIN domain being music or speech. These findings suggest that AP plays a critical role in HIN perception, manifested by increased activation and functional independence between auditory and sensorimotor regions for perceiving music and speech streams.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 1-18 |
頁數 | 18 |
期刊 | Cortex |
卷 | 174 |
DOIs | |
出版狀態 | 已出版 - 5月 2024 |