Dual-Masking Wind Noise Reduction System Based on Recurrent Neural Network

Wei Hung Liu, Yen Ting Lai, Kai Wen Liang, Jia Ching Wang, Pao Chi Chang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

In this paper, we adopt the architecture of permutation invariant training (PIT) model. We take advantage of the dual mask features of the speech separation architecture and combine the results of the two masks to synthesize a better signal with a specific ratio. We use bidirectional gated recurrent unit (BGRU) to find appropriate weights for the features after short time Fourier transform (STFT). A mask finds the signal you want to keep. Another mask finds the unwanted signals. Compared with the traditional method for eliminating wind noise, our proposed method can achieve better noise reduction for non-stationary and non-periodic wind noise.

原文???core.languages.en_GB???
主出版物標題ISPACS 2021 - International Symposium on Intelligent Signal Processing and Communication Systems
主出版物子標題5G Dream to Reality, Proceeding
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665419512
DOIs
出版狀態已出版 - 2021
事件2021 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2021 - Hualien, Taiwan
持續時間: 16 11月 202119 11月 2021

出版系列

名字ISPACS 2021 - International Symposium on Intelligent Signal Processing and Communication Systems: 5G Dream to Reality, Proceeding

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2021 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2021
國家/地區Taiwan
城市Hualien
期間16/11/2119/11/21

指紋

深入研究「Dual-Masking Wind Noise Reduction System Based on Recurrent Neural Network」主題。共同形成了獨特的指紋。

引用此