TY - JOUR
T1 - Dopant-Free Pyrrolopyrrole-Based (PPr) Polymeric Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells with Stability Over 6000 h
AU - Kuan, Chun Hsiao
AU - Balasaravanan, Rajendiran
AU - Hsu, Shih Min
AU - Ni, Jen Shyang
AU - Tsai, Yi Tai
AU - Zhang, Zhong Xiang
AU - Chen, Ming Chou
AU - Diau, Eric Wei Guang
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023/6/8
Y1 - 2023/6/8
N2 - A new set of pyrrolopyrrole-based (PPr) polymers incorporated with thioalkylated/alkylated bithiophene (SBT/BT) is synthesized and explored as hole-transporting materials (HTMs) for Sn-based perovskite solar cells (TPSCs). Three bithiophenyl spacers bearing the thioalkylated hexyl (SBT-6), thioalkylated tetradecyl (SBT-14), and tetradecyl (BT-14) chains are utilized to examine the effect of the alkyl chain lengths. Among them, the TPSCs are fabricated using PPr-SBT-14 as HTMs through a two-step approach by attaining a power conversion efficiency (PCE) of 7.6% with a remarkable long-term stability beyond 6000 h, which has not been reported elsewhere for a non-PEDOT:PSS-based TPSC. The PPr-SBT-14 device is stable under light irradiation for 5 h in air (50% relative humidity) at the maximum power point (MPP). The highly planar structure, strong intramolecular S(alkyl)···S(thiophene) interactions, and extended π-conjugation of SBT enable the PPr-SBT-14 device to outperform the standard poly(3-hexylthiophene,-2,5-diyl (P3HT) and other devices. The longer thio-tetradecyl chain in SBT-14 restricts molecular rotation and strongly affects the molecular conformation, solubility, and film wettability over other polymers. Thus, the present study makes a promising dopant-free polymeric HTM model for the future design of highly efficient and stable TPSCs.
AB - A new set of pyrrolopyrrole-based (PPr) polymers incorporated with thioalkylated/alkylated bithiophene (SBT/BT) is synthesized and explored as hole-transporting materials (HTMs) for Sn-based perovskite solar cells (TPSCs). Three bithiophenyl spacers bearing the thioalkylated hexyl (SBT-6), thioalkylated tetradecyl (SBT-14), and tetradecyl (BT-14) chains are utilized to examine the effect of the alkyl chain lengths. Among them, the TPSCs are fabricated using PPr-SBT-14 as HTMs through a two-step approach by attaining a power conversion efficiency (PCE) of 7.6% with a remarkable long-term stability beyond 6000 h, which has not been reported elsewhere for a non-PEDOT:PSS-based TPSC. The PPr-SBT-14 device is stable under light irradiation for 5 h in air (50% relative humidity) at the maximum power point (MPP). The highly planar structure, strong intramolecular S(alkyl)···S(thiophene) interactions, and extended π-conjugation of SBT enable the PPr-SBT-14 device to outperform the standard poly(3-hexylthiophene,-2,5-diyl (P3HT) and other devices. The longer thio-tetradecyl chain in SBT-14 restricts molecular rotation and strongly affects the molecular conformation, solubility, and film wettability over other polymers. Thus, the present study makes a promising dopant-free polymeric HTM model for the future design of highly efficient and stable TPSCs.
KW - polymeric hole-transport materials
KW - pyrrolopyrrole
KW - thioalkylated bithiophene
KW - tin perovskite solar cells
UR - http://www.scopus.com/inward/record.url?scp=85153201055&partnerID=8YFLogxK
U2 - 10.1002/adma.202300681
DO - 10.1002/adma.202300681
M3 - 期刊論文
C2 - 37029333
AN - SCOPUS:85153201055
SN - 0935-9648
VL - 35
JO - Advanced Materials
JF - Advanced Materials
IS - 23
M1 - 2300681
ER -