TY - JOUR
T1 - Dopamine-Initiated Photopolymerization for a Versatile Catechol-Functionalized Hydrogel
AU - Bui, Hoang Linh
AU - Nguyen, Cao Tuong Vi
AU - Lee, Wen Ya
AU - Huang, Shao Chuan
AU - Chen, Po Fan
AU - Lan, Ming Ying
AU - Huang, Chun Jen
N1 - Publisher Copyright:
©
PY - 2021/8/16
Y1 - 2021/8/16
N2 - Biomimetic catechol-functionalized hydrogels have attracted substantial attention due to their potential in a variety of biomedical applications, such as tissue repair and regeneration, drug delivery, and antimicrobial and antifouling applications. In this study, a one-pot strategy for fabrication of functional catecholic hydrogels using dopamine as a photoinitiator was developed. Under UV irradiation in an acidic solution, dopamine generates free radicals, likely semiquinone radicals, to trigger the addition polymerization, following pseudo-first-order kinetics. The dopamine-initiated photopolymerization provides a straightforward and facile approach and, in addition, prevents the undesirable oxidation to catecholic groups. Superhydrophilic sulfobetaine methacrylate (SBMA) was applied for developing biocompatible hydrogels. 1H nuclear magnetic resonance, UV-vis spectroscopy, gel permeation chromatography, and rheological studies were conducted to explore the polymerization mechanism and optimal experimental conditions in terms of pH, UV doses, and the concentration of dopamine. The unique properties of the resultant catechol-functionalized pSBMA hydrogels were demonstrated by enhanced mechanical properties through metal-catechol complexation, self-healing and injectable capability, high adhesiveness, and fouling resistance. Consequently, the synthetic strategy to design catecholic hydrogels can leverage the use of dopamine in a variety of applications.
AB - Biomimetic catechol-functionalized hydrogels have attracted substantial attention due to their potential in a variety of biomedical applications, such as tissue repair and regeneration, drug delivery, and antimicrobial and antifouling applications. In this study, a one-pot strategy for fabrication of functional catecholic hydrogels using dopamine as a photoinitiator was developed. Under UV irradiation in an acidic solution, dopamine generates free radicals, likely semiquinone radicals, to trigger the addition polymerization, following pseudo-first-order kinetics. The dopamine-initiated photopolymerization provides a straightforward and facile approach and, in addition, prevents the undesirable oxidation to catecholic groups. Superhydrophilic sulfobetaine methacrylate (SBMA) was applied for developing biocompatible hydrogels. 1H nuclear magnetic resonance, UV-vis spectroscopy, gel permeation chromatography, and rheological studies were conducted to explore the polymerization mechanism and optimal experimental conditions in terms of pH, UV doses, and the concentration of dopamine. The unique properties of the resultant catechol-functionalized pSBMA hydrogels were demonstrated by enhanced mechanical properties through metal-catechol complexation, self-healing and injectable capability, high adhesiveness, and fouling resistance. Consequently, the synthetic strategy to design catecholic hydrogels can leverage the use of dopamine in a variety of applications.
KW - antifouling property
KW - dopamine-initiated photopolymerization
KW - medical adhesive
KW - metal-catechol complexation
KW - mussel-inspired polymer
UR - http://www.scopus.com/inward/record.url?scp=85111289648&partnerID=8YFLogxK
U2 - 10.1021/acsabm.1c00564
DO - 10.1021/acsabm.1c00564
M3 - 期刊論文
C2 - 35006911
AN - SCOPUS:85111289648
SN - 2576-6422
VL - 4
SP - 6268
EP - 6279
JO - ACS Applied Bio Materials
JF - ACS Applied Bio Materials
IS - 8
ER -