Diverse phase transitions in optimized directed network models with distinct inward and outward node weights

Rong Chih Chang, An Liang Cheng, Pik Yin Lai

研究成果: 雜誌貢獻期刊論文同行評審

摘要

We consider growing directed network models that aim at minimizing the weighted connection expenses while at the same time favoring other important network properties such as weighted local node degrees. We employed statistical mechanics methods to study the growth of directed networks under the principle of optimizing some objective function. By mapping the system to an Ising spin model, analytic results are derived for two such models, exhibiting diverse and interesting phase transition behaviors for general edge weight, inward and outward node weight distributions. In addition, the unexplored cases of negative node weights are also investigated. Analytic results for the phase diagrams are derived showing even richer phase transition behavior, such as first-order transition due to symmetry, second-order transitions with possible reentrance, and hybrid phase transitions. We further extend previously developed zero-temperature simulation algorithm for undirected networks to the present directed case and for negative node weights, and we can obtain the minimal cost connection configuration efficiently. All the theoretical results are explicitly verified by simulations. Possible applications and implications are also discussed.

原文???core.languages.en_GB???
文章編號034312
期刊Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
107
發行號3
DOIs
出版狀態已出版 - 3月 2023

指紋

深入研究「Diverse phase transitions in optimized directed network models with distinct inward and outward node weights」主題。共同形成了獨特的指紋。

引用此