跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
Differentiating regularization weights - A simple mechanism to alleviate cold start in recommender systems
Hung Hsuan Chen
, Pu Chen
資訊工程學系
研究成果
:
雜誌貢獻
›
期刊論文
›
同行評審
21
引文 斯高帕斯(Scopus)
總覽
指紋
研究計畫
(1)
指紋
深入研究「Differentiating regularization weights - A simple mechanism to alleviate cold start in recommender systems」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Recommender Systems
100%
Simple Mechanisms
100%
Latent Factors
100%
Matrix Factorization
60%
SVD++
40%
Prediction Accuracy
20%
Proposed Methodology
20%
Loss Function
20%
Overfitting
20%
Regularization Method
20%
Result Prediction
20%
Simple Technique
20%
Two-objective
20%
Public Dataset
20%
Objective Conflict
20%
Hyperparameters
20%
Recommendation Model
20%
Markov Chain
20%
Frobenius Norm
20%
Relative Importance Weight
20%
Rating Score
20%
Python Package
20%
Field-aware Factorization Machine
20%
Long Tail Items
20%
Low Constraint
20%
Computer Science
Regularization
100%
Recommender Systems
100%
Matrix Factorization
75%
Baseline Model
50%
Relative Importance
25%
Prediction Accuracy
25%
Common Practice
25%
Reproducibility
25%
Markov Chain
25%
Mathematics
Matrix (Mathematics)
100%
Regularization
100%
Latent Factor
83%
Factorization
66%
Approximates
16%
Relative Importance
16%
Frobenius Norm
16%
Loss Function
16%
Markov Chain
16%
Psychology
Markov Chain
100%