TY - JOUR
T1 - Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor
AU - Ho, Ja An Annie
AU - Chang, Heng Chia
AU - Shih, Neng Yao
AU - Wu, Li Chen
AU - Chang, Ying Feng
AU - Chen, Chii Chang
AU - Chou, Chien
PY - 2010/7/15
Y1 - 2010/7/15
N2 - The development of rapid and sensitive methods for the detection of immunogenic tumor-associated antigen is important not only for understanding their roles in cancer immunology but also for the development of clinical diagnostics. α-Enolase (ENO1), a p48 molecule, is widely distributed in a variety of tissues, whereas γ-enolase (ENO2) and β-enolase (ENO3) are found exclusively in neuron/neuroendocrine and muscle tissues, respectively. Because ENO1 has been correlated with small cell lung cancer, nonsmall cell lung cancer, and head and neck cancer, it can be used as a potential diagnostic marker for lung cancer. In this study, we developed a simple, yet novel and sensitive, electrochemical sandwich immunosensor for the detection of ENO1; it operates through physisorption of anti-ENO1 monoclonal antibody on polyethylene glycol-modified disposable screen-printed electrode as the detection platform, with polyclonal secondary anti-ENO1-tagged, gold nanoparticle (AuNP) congregates as electrochemical signal probes. The immunorecognition of the sample ENO1 by the congregated AuNP@antibody occurred on the surface of the electrodes; the electrochemical signal from the bound AuNP congregates was obtained after oxidizing them in 0.1 M HCl at 1.2 V for 120 s, followed by the reduction of AuCl4- in square wave voltammetry (SWV) mode. The resulting sigmoidally shaped dose-response curves possessed a linear dynamic working range from 10-8 to 10-12 g/mL. This AuNP congregate-based assay provides an amplification approach for detecting ENO1 at trace levels, leading to a detection limit as low as 11.9 fg (equivalent to 5 μL of a 2.38 pg/mL solution).
AB - The development of rapid and sensitive methods for the detection of immunogenic tumor-associated antigen is important not only for understanding their roles in cancer immunology but also for the development of clinical diagnostics. α-Enolase (ENO1), a p48 molecule, is widely distributed in a variety of tissues, whereas γ-enolase (ENO2) and β-enolase (ENO3) are found exclusively in neuron/neuroendocrine and muscle tissues, respectively. Because ENO1 has been correlated with small cell lung cancer, nonsmall cell lung cancer, and head and neck cancer, it can be used as a potential diagnostic marker for lung cancer. In this study, we developed a simple, yet novel and sensitive, electrochemical sandwich immunosensor for the detection of ENO1; it operates through physisorption of anti-ENO1 monoclonal antibody on polyethylene glycol-modified disposable screen-printed electrode as the detection platform, with polyclonal secondary anti-ENO1-tagged, gold nanoparticle (AuNP) congregates as electrochemical signal probes. The immunorecognition of the sample ENO1 by the congregated AuNP@antibody occurred on the surface of the electrodes; the electrochemical signal from the bound AuNP congregates was obtained after oxidizing them in 0.1 M HCl at 1.2 V for 120 s, followed by the reduction of AuCl4- in square wave voltammetry (SWV) mode. The resulting sigmoidally shaped dose-response curves possessed a linear dynamic working range from 10-8 to 10-12 g/mL. This AuNP congregate-based assay provides an amplification approach for detecting ENO1 at trace levels, leading to a detection limit as low as 11.9 fg (equivalent to 5 μL of a 2.38 pg/mL solution).
UR - http://www.scopus.com/inward/record.url?scp=77954632061&partnerID=8YFLogxK
U2 - 10.1021/ac1001959
DO - 10.1021/ac1001959
M3 - 期刊論文
C2 - 20557064
AN - SCOPUS:77954632061
SN - 0003-2700
VL - 82
SP - 5944
EP - 5950
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 14
ER -