TY - JOUR
T1 - Designed phosphate-methylated oligonucleotides as PCR primers for SNP discrimination
AU - Li, Tsai Ling
AU - Wu, Meng Wei
AU - Lin, Wei Chen
AU - Lai, Chian Hui
AU - Chang, Yu Hsuan
AU - Su, Li Jen
AU - Chen, Wen Yih
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/7/19
Y1 - 2019/7/19
N2 - Polymerase chain reaction (PCR) is a powerful technique for the detection and quantification of nucleic acids and has enormous applications to research in molecular biology. Certain inherited diseases, caused by single nucleotide mutations, however, are difficult to identify by PCR, using DNA primers and probes, in a situation where a false diagnosis may lead to incorrect or delayed treatment. With the aim of enhancing the specificity of PCR, we used novel chemically synthesized oligonucleotides containing site-specific methyl phosphotriester (MPTE) inter-nucleoside linkage(s) as primers and probes. The methyl phosphotriester linkages carry no charge, so the reduction in the electrostatic repulsion of an MPTE-DNA/DNA duplex shows stronger hybridization affinity compared to a DNA/DNA duplex. However, the electrosteric effects introduced by the methyl group may result in instability of the double-stranded DNA (dsDNA) formed. With the use of specific MPTE modification sites and optimization of the number of MPTE modifications, greater delta melting temperature (ΔTm) may be obtained, in concert with adjustment of PCR operating conditions, especially with respect to the annealing temperature, to achieve more discriminatory results between the target template and the perfectly matched primer and the mismatched primer. In single nucleotide polymorphism (SNP) genotyping, the results demonstrated that MPTE-modified probes can improve specificity. In summary, MPTE-modified oligonucleotides are a promising DNA analog applied to PCR primers and probes to enhance the specificity and to provide more precise detection results for various applications, such as for genetic diagnosis. In summary, two common DNA polymerases we tested could successfully recognize the MPTE-modified primers and probes. Under the optimal operating conditions, MPTE modification has the ability to improve the discrimination of single nucleotide polymorphism by increasing the ΔTm of the perfect match and mismatch sequences and to provide more precise detection results for various applications, such as genetic diagnosis.
AB - Polymerase chain reaction (PCR) is a powerful technique for the detection and quantification of nucleic acids and has enormous applications to research in molecular biology. Certain inherited diseases, caused by single nucleotide mutations, however, are difficult to identify by PCR, using DNA primers and probes, in a situation where a false diagnosis may lead to incorrect or delayed treatment. With the aim of enhancing the specificity of PCR, we used novel chemically synthesized oligonucleotides containing site-specific methyl phosphotriester (MPTE) inter-nucleoside linkage(s) as primers and probes. The methyl phosphotriester linkages carry no charge, so the reduction in the electrostatic repulsion of an MPTE-DNA/DNA duplex shows stronger hybridization affinity compared to a DNA/DNA duplex. However, the electrosteric effects introduced by the methyl group may result in instability of the double-stranded DNA (dsDNA) formed. With the use of specific MPTE modification sites and optimization of the number of MPTE modifications, greater delta melting temperature (ΔTm) may be obtained, in concert with adjustment of PCR operating conditions, especially with respect to the annealing temperature, to achieve more discriminatory results between the target template and the perfectly matched primer and the mismatched primer. In single nucleotide polymorphism (SNP) genotyping, the results demonstrated that MPTE-modified probes can improve specificity. In summary, MPTE-modified oligonucleotides are a promising DNA analog applied to PCR primers and probes to enhance the specificity and to provide more precise detection results for various applications, such as for genetic diagnosis. In summary, two common DNA polymerases we tested could successfully recognize the MPTE-modified primers and probes. Under the optimal operating conditions, MPTE modification has the ability to improve the discrimination of single nucleotide polymorphism by increasing the ΔTm of the perfect match and mismatch sequences and to provide more precise detection results for various applications, such as genetic diagnosis.
KW - Nucleotide-derivative modification
KW - PCR
KW - qPCR
KW - SNP
KW - Specificity nucleic acid methyl phosphotriester
KW - Synthesized oligonucleotides
UR - http://www.scopus.com/inward/record.url?scp=85067951138&partnerID=8YFLogxK
U2 - 10.1007/s00216-019-01865-4
DO - 10.1007/s00216-019-01865-4
M3 - 期刊論文
C2 - 31209551
AN - SCOPUS:85067951138
VL - 411
SP - 3871
EP - 3880
JO - Analytical and Bioanalytical Chemistry
JF - Analytical and Bioanalytical Chemistry
SN - 1618-2642
IS - 17
ER -