跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
Depth Human Action Recognition Based on Convolution Neural Networks and Principal Component Analysis
Manh Quan Bui, Viet Hang Duong, Tzu Chiang Tai,
Jia Ching Wang
認知智慧與精準健康照護研究中心
資訊工程學系
研究成果
:
書貢獻/報告類型
›
會議論文篇章
›
同行評審
3
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Depth Human Action Recognition Based on Convolution Neural Networks and Principal Component Analysis」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Principal Coordinate Analysis (PCoA)
100%
Recognition-based
100%
Convolution Neural Network
100%
Human Action Recognition
100%
Network Component Analysis
100%
Convolution Neural Network Model
66%
Noisy Data
33%
Video Data
33%
Algorithm Analysis
33%
Superior Performance
33%
Computational Requirements
33%
Dynamic Information
33%
Low Dimension
33%
Problem Recognition
33%
Convolutional Layer
33%
Depth Video
33%
Low Computational
33%
View-invariant
33%
Multi-view Video Plus Depth
33%
Discriminative Representation
33%
Hidden Dynamics
33%
View-invariant Feature
33%
Fourier Temporal Pyramids
33%
Real Depth
33%
Nonnegative Tensor
33%
Viewpoint Variations
33%
Temporal Misalignment
33%
Computer Science
Principal Components
100%
Component Analysis
100%
Principle Component Analysis
100%
human action recognition
100%
Convolutional Neural Network
100%
Convolution Neural Network Model
100%
Network Component
100%
Experimental Result
50%
Superior Performance
50%
Dynamic Information
50%
Recognition Problem
50%
Convolution Layer
50%
Invariant
50%