Deep Reinforcement Learning for Collision Avoidance of Autonomous Vehicle

Hsiao Ting Tseng, Chen Chiung Hsieh, Wei Ting Lin, Jyun Ting Lin

研究成果: 書貢獻/報告類型會議論文篇章同行評審

2 引文 斯高帕斯(Scopus)

摘要

To save training efforts, reinforcement learning approach is applied to the autonomous vehicle for obstacle avoidance. Therefore, this study is aimed to let the autonomous vehicle to learn from mistakes and readdress its movement accuracy for collision avoidance in working environment. An enhanced learning method Q-learning is used to record and update the Q values for different movement through a table that the autonomous vehicle can use it to determine how and where to move. The Q table is learned through the deep learning neural network which may encounter innumerable situations from the environments and the different actions performed by the autonomous vehicle. In the experiments, the depth camera is adopted as the input device to be not affected by light intensity and road color. The Q table is ready to use after 9000 epochs or about 3.5 hours training. Let the autonomous vehicle run for 3 minutes at a time in three different environments with lights on and off 10 times each. The success rate of obstacle avoidance is as high as 95% which proves the feasibility of proposed approach.

原文???core.languages.en_GB???
主出版物標題2020 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728173993
DOIs
出版狀態已出版 - 28 9月 2020
事件7th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020 - Taoyuan, Taiwan
持續時間: 28 9月 202030 9月 2020

出版系列

名字2020 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???7th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020
國家/地區Taiwan
城市Taoyuan
期間28/09/2030/09/20

指紋

深入研究「Deep Reinforcement Learning for Collision Avoidance of Autonomous Vehicle」主題。共同形成了獨特的指紋。

引用此