Cyclic Transfer Learning for Mandarin-English Code-Switching Speech Recognition

Cao Hong Nga, Duc Quang Vu, Huong Hoang Luong, Chien Lin Huang, Jia Ching Wang

研究成果: 雜誌貢獻期刊論文同行評審

4 引文 斯高帕斯(Scopus)

摘要

Transfer learning is a common method to improve the performance of the model on a target task via pre-training the model on pretext tasks. Different from the methods using monolingual corpora for pre-training, in this study, we propose a Cyclic Transfer Learning method (CTL) that utilizes both code-switching (CS) and monolingual speech resources as the pretext tasks. Moreover, the model in our approach is always alternately learned among these tasks. This helps our model can improve its performance via maintaining CS features during transferring knowledge. The experiment results on the standard SEAME Mandarin-English CS corpus have shown that our proposed CTL approach achieves the best performance with Mixed Error Rate (MER) of 16.3% on testman, 24.1% on testsge. In comparison to the baseline model that was pre-trained with monolingual data, our CTL method achieves 11.4% and 8.7% relative MER reduction on the testman and testsge sets, respectively. Besides, the CTL approach also outperforms compared to other state-of-the-art methods.

原文???core.languages.en_GB???
頁(從 - 到)1387-1391
頁數5
期刊IEEE Signal Processing Letters
30
DOIs
出版狀態已出版 - 2023

指紋

深入研究「Cyclic Transfer Learning for Mandarin-English Code-Switching Speech Recognition」主題。共同形成了獨特的指紋。

引用此