摘要
La-Mg-Ni based alloys have a high hydrogen storage capacity, but their cycle stability is usually poor. In this work, a series of composites were synthesized by mixing La-Mg-Ni based alloys with a commercial AB5 type alloy. The aim was to investigate the effects of AB5 additions and ball milling treatment in improving the cycle stability of La-Mg-Ni based alloys, while maintaining a substantial and reversible hydrogen storage capability. It was found that the cycle stability was greatly influenced by the amount of AB5 added, but the effect of ball milling pre-treatment was small. While the increase in AB5 content was beneficial, the cost of the composite also went up accordingly. In light of these challenges, a feasibility study was conducted to optimize the compositions. The results suggested that the composite with a 50 wt% of AB5 addition was the optimum compositions in maximizing the hydrogen storage capacity and cycle stability, while minimizing the cost up to 20% as compared with AB5 alone.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 274-281 |
頁數 | 8 |
期刊 | Journal of Alloys and Compounds |
卷 | 661 |
DOIs | |
出版狀態 | 已出版 - 15 3月 2016 |