Crescent-Shaped Low-Temperature Distribution along the Convex Topography in the Southeastern Edge of Taiwan Bank in Summer

Hung Jen Lee, Ming An Lee, Chia Ying Ho, Po Chun Hsu, Yi Chen Wang

研究成果: 雜誌貢獻期刊論文同行評審

2 引文 斯高帕斯(Scopus)

摘要

Various physical mechanisms of ocean upwelling usually occur near or along coastal regions worldwide. Five upwelling zones of unequal intensity are found around the Taiwan Strait, and the Taiwan Bank (TB) upwelling zone has the most prominent characteristics of low temperature. In this study, satellite images, shipboard ADCPs (acoustic Doppler current profilers), and CTDs (conductivity–temperature–depth measures) were analyzed to investigate the processes of cold water upwelling around the TB shoaling zone. In addition, the MITgcm numerical model and the flexible cu-bic spline technique were also employed, allowing us to better understand those processes. The model results suggested that a combination of Ekman transport and the centrifugal force, driven by the geostrophic South China Sea Warm Current (SCSWC), constitutes a physical mechanism to contribute the vigorous upwelling in the TB shoal zone. The upwelling is largely driven by Ekman transport. However, the centrifugal force may explain why the upwelling with a crescent<shaped distribution of low temperatures along the convex topography of the southeastern edge of the TB shoaling zone is more prominent than expected, as it tends toward the so<called gradient wind balance. Sudden relaxation of the friction force oc-curred because of the very sharp shelf break (20–60 m) and steep slope topography; a discontinuous velocity zone around the shelf break could also lead to vigorous cold water upwelling.

原文???core.languages.en_GB???
頁(從 - 到)2705-2723
頁數19
期刊Journal of Physical Oceanography
52
發行號11
DOIs
出版狀態已出版 - 10月 2022

指紋

深入研究「Crescent-Shaped Low-Temperature Distribution along the Convex Topography in the Southeastern Edge of Taiwan Bank in Summer」主題。共同形成了獨特的指紋。

引用此