Crawford numbers of companion matrices

Hwa Long Gau, Kuo Zhong Wang, Pei Yuan Wu

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

The (generalized) Crawford number C(A) of an n-by-n complex matrix A is, by definition, the distance from the origin to the boundary of the numerical range W(A) of A. If A is a companion matrix (Formula Presented) then it is easily seen that C(A) ≥ cos(π/n). The main purpose of this paper is to determine when the equality C(A) = cos(π/n) holds. A sufficient condition for this is that the boundary of W(A) contains a point λ for which the subspace of ℂn spanned by the vectors x with 〈Ax,x〉 = λ||x||2 has dimension 2, while a necessary condition is (Formula Presented) for some real θ. Examples are given showing that in general these conditions are not simultaneously necessary and sufficient. We then prove that they are if A is (unitarily) reducible. We also establish a lower bound for the numerical radius w(A) of A: w(A) ≥ cos(π/(n+1)), and show that the equality holds if and only if A is equal to the n-by-n Jordan block.

原文???core.languages.en_GB???
文章編號oam-10-49
頁(從 - 到)863-880
頁數18
期刊Operators and Matrices
10
發行號4
DOIs
出版狀態已出版 - 12月 2016

指紋

深入研究「Crawford numbers of companion matrices」主題。共同形成了獨特的指紋。

引用此