TY - JOUR
T1 - Convolutional Blur Attention Network for Cell Nuclei Segmentation
AU - Le, Phuong Thi
AU - Pham, Tuan
AU - Hsu, Yi Chiung
AU - Wang, Jia Ching
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Accurately segmented nuclei are important, not only for cancer classification, but also for predicting treatment effectiveness and other biomedical applications. However, the diversity of cell types, various external factors, and illumination conditions make nucleus segmentation a challenging task. In this work, we present a new deep learning-based method for cell nucleus segmentation. The proposed convolutional blur attention (CBA) network consists of downsampling and upsampling procedures. A blur attention module and a blur pooling operation are used to retain the feature salience and avoid noise generation in the downsampling procedure. A pyramid blur pooling (PBP) module is proposed to capture the multi-scale information in the upsampling procedure. The superiority of the proposed method has been compared with a few prior segmentation models, namely U-Net, ENet, SegNet, LinkNet, and Mask RCNN on the 2018 Data Science Bowl (DSB) challenge dataset and the multi-organ nucleus segmentation (MoNuSeg) at MICCAI 2018. The Dice similarity coefficient and some evaluation matrices, such as F1 score, recall, precision, and average Jaccard index (AJI) were used to evaluate the segmentation efficiency of these models. Overall, the proposal method in this paper has the best performance, the AJI indicator on the DSB dataset and MoNuSeg is 0.8429, 0.7985, respectively.
AB - Accurately segmented nuclei are important, not only for cancer classification, but also for predicting treatment effectiveness and other biomedical applications. However, the diversity of cell types, various external factors, and illumination conditions make nucleus segmentation a challenging task. In this work, we present a new deep learning-based method for cell nucleus segmentation. The proposed convolutional blur attention (CBA) network consists of downsampling and upsampling procedures. A blur attention module and a blur pooling operation are used to retain the feature salience and avoid noise generation in the downsampling procedure. A pyramid blur pooling (PBP) module is proposed to capture the multi-scale information in the upsampling procedure. The superiority of the proposed method has been compared with a few prior segmentation models, namely U-Net, ENet, SegNet, LinkNet, and Mask RCNN on the 2018 Data Science Bowl (DSB) challenge dataset and the multi-organ nucleus segmentation (MoNuSeg) at MICCAI 2018. The Dice similarity coefficient and some evaluation matrices, such as F1 score, recall, precision, and average Jaccard index (AJI) were used to evaluate the segmentation efficiency of these models. Overall, the proposal method in this paper has the best performance, the AJI indicator on the DSB dataset and MoNuSeg is 0.8429, 0.7985, respectively.
KW - Cell nuclei
KW - Convolutional neural network
KW - Deep learning
KW - Nucleus segmentation
UR - http://www.scopus.com/inward/record.url?scp=85124895687&partnerID=8YFLogxK
U2 - 10.3390/s22041586
DO - 10.3390/s22041586
M3 - 期刊論文
C2 - 35214488
AN - SCOPUS:85124895687
SN - 1424-8220
VL - 22
JO - Sensors (Switzerland)
JF - Sensors (Switzerland)
IS - 4
M1 - 1586
ER -