TY - JOUR
T1 - Controlling the zwitterionization degree of alternate copolymers for minimizing biofouling on PVDF membranes
AU - Lien, Cheng Chi
AU - Yeh, Lu Chen
AU - Venault, Antoine
AU - Tsai, Shao Chi
AU - Hsu, Chen Hua
AU - Dizon, Gian Vincent
AU - Huang, Yu Tzu
AU - Higuchi, Akon
AU - Chang, Yung
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - This study sheds light on the effect of the zwitterionization degree (ZD) of alternate copolymers on the antifouling properties of coated polyvinylidene fluoride (PVDF) membranes. A series of copolymers was formed from poly (maleic anhydride-alt-1-octadecene) which underwent a ring opening reaction leading to zwitterionization, and used as coating materials for PVDF membranes. A complete surface analysis (FT-IR, XPS, SEM) of the membranes served at controlling that the membranes were efficiently modified. Then, bacterial attachment and HT1080 cell adhesion biofouling tests revealed that Z55.5 membrane, modified with a copolymer having a 55.5% ZD, resisted to biofouling better than membranes modified with copolymers having a lower or a higher ZD. Stability tests, surface free energy calculations, and FT-IR mapping results showed that the modification using Z55.5 was the most stable and homogeneous. Therefore, there is an optimal ZD ensuring a compromise between high stability and low-biofouling. As the ZD increases, the hydrophobic interactions stabilizing the coating are challenged by strong dipole interactions between the zwitterionic moieties and the surrounding environment, which destabilizes the zwitterionic coating. Practically, the optimized Z55.5 membrane was used to harvest Microalgae, and outperformed a commercial hydrophilic membrane (FRRZ55.5 = 61% vs. FRRcom = 15%), consistent with reduced adhesion of the algae on the surface as evidenced by SEM, and measured by the irreversible flux decline ratio (DRir, Z55.5 = 39% vs. DRir, com = 85%).
AB - This study sheds light on the effect of the zwitterionization degree (ZD) of alternate copolymers on the antifouling properties of coated polyvinylidene fluoride (PVDF) membranes. A series of copolymers was formed from poly (maleic anhydride-alt-1-octadecene) which underwent a ring opening reaction leading to zwitterionization, and used as coating materials for PVDF membranes. A complete surface analysis (FT-IR, XPS, SEM) of the membranes served at controlling that the membranes were efficiently modified. Then, bacterial attachment and HT1080 cell adhesion biofouling tests revealed that Z55.5 membrane, modified with a copolymer having a 55.5% ZD, resisted to biofouling better than membranes modified with copolymers having a lower or a higher ZD. Stability tests, surface free energy calculations, and FT-IR mapping results showed that the modification using Z55.5 was the most stable and homogeneous. Therefore, there is an optimal ZD ensuring a compromise between high stability and low-biofouling. As the ZD increases, the hydrophobic interactions stabilizing the coating are challenged by strong dipole interactions between the zwitterionic moieties and the surrounding environment, which destabilizes the zwitterionic coating. Practically, the optimized Z55.5 membrane was used to harvest Microalgae, and outperformed a commercial hydrophilic membrane (FRRZ55.5 = 61% vs. FRRcom = 15%), consistent with reduced adhesion of the algae on the surface as evidenced by SEM, and measured by the irreversible flux decline ratio (DRir, Z55.5 = 39% vs. DRir, com = 85%).
KW - Antibiofouling PVDF membranes
KW - Coating stability
KW - Poly(maleic anhydride-alt-1-octadecene)-derivatives
KW - Zwitterionization degree
UR - http://www.scopus.com/inward/record.url?scp=85051986139&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2018.07.054
DO - 10.1016/j.memsci.2018.07.054
M3 - 期刊論文
AN - SCOPUS:85051986139
SN - 0376-7388
VL - 565
SP - 119
EP - 130
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -