Contrastive Learning Aided Single Image Deblurring

Feng Kai Jan, Chih Wei Tang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

2 引文 斯高帕斯(Scopus)

摘要

Fast and high-quality image deblurring is essential for real-time applications on edge devices. Reduction of the solution space is important for the ill-posed deblurring task. Different from most existing deblurring networks that pull together a blurry image and a sharp image in the latent space, this paper proposes contrastive learning aided deblurring that also pushes a deblurred image apart from a blurry image for training the existing MIMO-UNet. The contrastive loss combined with the multi-scale content loss and frequency reconstruction loss helps the deblurring network pull together the anchor and positive pair while pushes the anchor apart from the negative pair. The proposed progressive negative sample scheme gradually increases the lower bound of the quality of negative samples to keep the contrastive loss decreasing. For the GoPro dataset, the proposed scheme improves the quality of MIMO-UNet while keep the low inference time (0.392 second on GPU 1080Ti) and number of parameters (6.8 M) of the network unchanged.

原文???core.languages.en_GB???
主出版物標題2022 IEEE International Conference on Consumer Electronics-Asia, ICCE-Asia 2022
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665464345
DOIs
出版狀態已出版 - 2022
事件2022 IEEE International Conference on Consumer Electronics-Asia, ICCE-Asia 2022 - Yeosu, Korea, Republic of
持續時間: 26 10月 202228 10月 2022

出版系列

名字2022 IEEE International Conference on Consumer Electronics-Asia, ICCE-Asia 2022

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2022 IEEE International Conference on Consumer Electronics-Asia, ICCE-Asia 2022
國家/地區Korea, Republic of
城市Yeosu
期間26/10/2228/10/22

指紋

深入研究「Contrastive Learning Aided Single Image Deblurring」主題。共同形成了獨特的指紋。

引用此