CoNet: Compact and Low-Cost CNN for Image Classification

Fattah Azzuhry Rahadian, W. Wahyono, Agus Harjoko, Jia Ching Wang, Chien Yao Wang

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

As the number of applications of Convolutional Neural Network increasing, the need for lightweight models to be able to run on embedded devices is also increasing. For that reason, a novel lightweight CNN is designed. Experiment on CIFAR-10 and CIFAR-100 shows that our method outperforms other state-of-the-art models with less parameters and FLOPs.

原文???core.languages.en_GB???
主出版物標題2019 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2019
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728132792
DOIs
出版狀態已出版 - 5月 2019
事件6th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2019 - Yilan, Taiwan
持續時間: 20 5月 201922 5月 2019

出版系列

名字2019 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2019

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???6th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2019
國家/地區Taiwan
城市Yilan
期間20/05/1922/05/19

指紋

深入研究「CoNet: Compact and Low-Cost CNN for Image Classification」主題。共同形成了獨特的指紋。

引用此