跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
Computational complexity reduction of neural networks of brain tumor image segmentation by introducing fermi–dirac correction functions
Yen Ling Tai, Shin Jhe Huang,
Chien Chang Chen
, Henry Horng Shing Lu
認知智慧與精準健康照護研究中心
生醫科學與工程學系
研究成果
:
雜誌貢獻
›
期刊論文
›
同行評審
11
引文 斯高帕斯(Scopus)
總覽
指紋
研究計畫
(1)
指紋
深入研究「Computational complexity reduction of neural networks of brain tumor image segmentation by introducing fermi–dirac correction functions」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Neural Network
100%
MRI Brain Tumor
100%
Tumour Image Segmentation
100%
Computational Complexity Reduction
100%
Correction Function
100%
Preprocessing Techniques
28%
Computation Time
28%
Deep Learning Methods
28%
High Performance
14%
Computational Complexity
14%
Image Segmentation
14%
Band Theory
14%
Normalization Method
14%
High Cost
14%
U-Net
14%
Hardware Architecture
14%
Structural Complexity
14%
Physical Systems
14%
Space Images
14%
Structural Flexibility
14%
Low-cost Hardware
14%
Technical Development
14%
Score Normalization
14%
Gamma Correction
14%
Low Computational
14%
BraTS 2019
14%
Image Augmentation
14%
Non-interaction
14%
Computational Capability
14%
Global Histogram Equalization
14%
Computer Science
Computational Complexity
100%
Image Segmentation
100%
Neural Network
100%
Complexity Reduction
100%
Computational Time
66%
Deep Learning Method
66%
Hardware Cost
33%
Physical System
33%
Hardware Architecture
33%
Histogram Equalization
33%
Score Normalization
33%
Gamma Correction
33%
U-Net
33%
Normalization Function
33%
Computer Hardware
33%
Graphics Processing Unit
33%
Engineering
Computational Complexity
100%
Computational Time
100%
Complexity Reduction
100%
Deep Learning Method
100%
Physical System
50%
Graphics Processing Unit
50%
Histogram
50%
Image Space
50%
Gamma Correction
50%
Material Science
Morphology
100%
Tumor
100%