Comparison of Fe2O3 and Fe2CoO4 core-shell plasmonic nanoparticles for aptamer mediated SERS assays

Haley Marks, Samuel Mabbott, Po Jung Huang, George W. Jackson, Jun Kameoka, Duncan Graham, Gerard L. Coté

研究成果: 書貢獻/報告類型會議論文篇章同行評審

3 引文 斯高帕斯(Scopus)

摘要

Conjugation of oligonucleotides or aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound bundles of nanoparticles which cause a measurable change in the colloid's optical properties. Here, we present further optimization of a "SERS off" competitive binding assay utilizing plasmonic and magnetic nanoparticles for the detection of the toxin bisphenol A (BPA). The assay involves 1) a 'target' silver nanoparticle functionalized with a Raman reporter dye and PEGylated BPA-binding DNA aptamers, and 2) a version of the toxin BPA, bisphenol A diglycidyl ether (BADGE), PEGylated and immobilized onto a silver coated magnetic 'probe' nanoparticle. When mixed, these target and probe nanoparticles cluster into magnetic dimers and trimers and an enhancement in their SERS spectra is observed. Upon introduction of free BPA in its native form, target AgNPs are competitively freed; reversing the nanoparticle assembly and causing the SERS signal to "turn-off" and decrease in response to the competitive binding event. The assay particles were housed inside two types of optofluidic chips containing magnetically active nickel pads, in either a straight or spotted pattern, and both Fe2O3 and Fe2CoO4 were compared as magnetic cores for the silver coated probe nanoparticle. We found that the Ag@ Fe2O3 particles were, on average, more uniform in size and more stable than Ag@ Fe2CoO4, while the addition of cobalt significantly improved the collection time of particles within the magnetic chips. Using 3D Raman mapping, we found that the straight channel design with the Ag@ Fe2O3 particles provided the most uniform nanoparticle organization, while the spotted channel design with Ag@ Fe2CoO4 demonstrated a larger SERS enhancement, and thus a lower limit of detection.

原文???core.languages.en_GB???
主出版物標題Colloidal Nanoparticles for Biomedical Applications XI
編輯Wolfgang J. Parak, Marek Osinski, Xing-Jie Liang
發行者SPIE
ISBN(電子)9781628419566
DOIs
出版狀態已出版 - 2016
事件Colloidal Nanoparticles for Biomedical Applications XI - San Francisco, United States
持續時間: 13 2月 201615 2月 2016

出版系列

名字Progress in Biomedical Optics and Imaging - Proceedings of SPIE
9722
ISSN(列印)1605-7422

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Colloidal Nanoparticles for Biomedical Applications XI
國家/地區United States
城市San Francisco
期間13/02/1615/02/16

指紋

深入研究「Comparison of Fe2O3 and Fe2CoO4 core-shell plasmonic nanoparticles for aptamer mediated SERS assays」主題。共同形成了獨特的指紋。

引用此